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ABSTRACT
Drive-by sensing has emerged as a popular way to achieve fine-
grained sensing of physical phenomena. However, for it to be effec-
tive at a city-scale, there is a need to optimally select a subset of
vehicles from a larger available fleet. These chosen vehicles must
maximize coverage of the entire city. Simultaneously, they must
fulfill other deployment requirements specific to the sensing ap-
plication such as reference-monitor colocation instances for gas
sensors. In this paper, we describe a system to evaluate the coverage
offered by different subsets of vehicles for sensor deployment based
on historical vehicle mobility data. Our system allows evaluation of
different vehicle selection algorithms, and also provides two in-built
baselines — i) Random-MP, and ii)MaxPoints — for comparison.
Finally, we provide visualizations showing coverage to gauge the
efficacy of different vehicle selections.

CCS CONCEPTS
•Computer systems organization→ Sensor networks; •Hard-
ware → Sensor applications and deployments.
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1 INTRODUCTION
Drive-by sensing is an increasingly popular way to sense physical
phenomena using vehicles equipped with low-cost sensors that
are driven around a geographical area of interest. This method
of sensing has a number of benefits over traditional deployments.
Unlike static sensors that only report value from a fixed geographic
location, drive-by sensing provides coverage for a larger area. Thus,
it requires fewer sensors than static sensing to attain the same cov-
erage. Further, the saved cost due to fewer sensors can be used to
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employ more vehicles in order to increase coverage. Moreover, sen-
sors for applications like air pollution sensing need frequent colo-
cation with reference-grade monitors for calibration. With drive-by
sensing, multi-hop calibration [4] techniques allow colocation to
be done on the fly without suspending their operation. However,
in the case of static sensors, this would require manual colocation,
which in turn results in sensor downtime.

For drive-by sensing to be effective at a city-scale, the set of
vehicles needs to be chosen carefully from a larger fleet of available
vehicles, subject to an available budget. Ideally, the selected vehicles
must maximize spatio-temporal coverage, while satisfying other
sensing application-specific needs (such as, reference colocations).

In this paper, we present a system that provides a playground to
compare sensor deployments involving different subsets of vehicles
by reporting coverage obtained through each selection. Initially, the
user inputs mobility patterns (GPS timestamps) of either or both
cabs and public transport buses for a candidate city. The mobility
dataset is split into two parts — train and test. To evaluate the
performance of the user-provided vehicles, the system has two
baseline vehicle selection algorithms that are run on the train set
and show the coverage obtained on the test set. The system also has
in-built support for the following two publicly available mobility
datasets – San Francisco Taxis [8] and Rome Taxis [1]. Thus, the
users can easily assess their vehicle selection algorithms against the
baselines on these datasets. We intend to open-source our system
for drive-by sensing network operators.

2 SYSTEM DESCRIPTION
In this section, we describe the implementation of our system. Fur-
ther, we describe a couple of baseline comparison algorithms along
with the metric percentage coverage used to evaluate them.

2.1 Implementation
We describe the steps implemented for evaluating the performance
of the selected vehicles for a sensing application in a given city.

Step 1: Stratification - Our system provides the option of
partitioning the city in three ways – (i) uniformly-sized grids, (ii)
segmentation of the road network, and (iii) custom stratification
polygons (for example, administrative boroughs in the city) defined
in a GeoJSON-encoded polygon format. Different sensing applica-
tions may require a different kind of stratification – air pollution
sensing may require uniform “gridding” of the city, pothole detec-
tion may require segmentation of the road network. Further, we
also assign each resulting stratum a stratum ID for easy reference
for the rest of the process. The number of strata is dependent on
the spatial granularity entered by the user. Finally, the user also
provides a temporal granularity and the system similarly assigns
each time segment a time segment ID.
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Step 2: Spatio-temporal Query Execution - In this step, the
user inputs the mobility patterns representing the various vehicles
available for drive-by sensing. For each record in the dataset, we
will have a vehicle’s locations (latitude and longitude) and the
associated timestamps specifying their movement. We insert this
dataset into a database and create a compound spatio-temporal
index consisting of latitude, longitude, and timestamp. This index is
formed by employing GeoHash technique, which divides the earth’s
surface into grids and encodes each location using an alphanumeric
string. Indexing helps in faster execution of geospatial queries.
For example, we can quickly assign each record in the data with
the stratum ID and the time segment ID. Also, for some sensing
applications, such as air quality monitoring using gas sensors, the
geospatial indices can efficiently calculate colocation instances with
reference monitors, needed for sensor calibration.

Step 3: Vehicle Selection - Our system divides the database
into 2 parts (chronologically) – the train and the test set. The base-
line algorithms select vehicles using the train set. Additionally, the
user can input any subset of the vehicles selected using their algo-
rithm. Finally, map-based visualizations displaying spatio-temporal
coverage on the test set are shown for both the user-inputted and
baseline-selected vehicles.

Real-world deployments are often dynamic with changing bud-
gets and removal of vehicles from the original fleet. Our system han-
dles such incremental deployment scenarios. Further, the dataset
needs to have enough diversity in the cab routes for viable selection
of vehicles. The user’s budget must be large enough to tolerate daily
variations in vehicle mobility.

2.2 Baseline Algorithms
Here, we define the two baseline algorithms for vehicle selection.
In random minus minimum points algorithm (hereon referred as
Random-MP), the required number of vehicles are chosen uni-
formly at random from the set of all vehicles that have reported ≥ k
records in the dataset. InMax Points algorithm, the list of available
vehicles is sorted in descending order on the basis of number of
records they have reported. Then, the required number of vehicles
are selected from the top of this list.

2.3 Evaluation Metric: Percentage Coverage
Let N be the set of all vehicles in a dataset that are available for
deployment. Let a vehicle selection algorithm select a set M (M ⊂

N ) of these vehicles. Let D be the set all spatial segments, and T
be the set of all time segments. Also, let Ci,d,t be a known binary
parameter that informs if the ith vehicle in the dataset was in the
dth (d ∈ D) spatial segment in time interval t (t ∈ T ). Then,

Percentage Coverage = 100 ·

∑
i ∈M,d ∈D,t ∈T

Ci,d,t∑
j ∈N ,d ∈D,t ∈T

Cj,d,t

3 EXPERIMENTAL RESULTS
In this section, we compare the results of using the two baseline
algorithms on the datasets described earlier. For these experiments,
we use the temporal granularity to be 2 hours and partition the cities
into square-shaped grids of side 100 meters. We vary the overall
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Figure 1: Vehicle selection: MaxPoints vs Random-MP

budget for vehicle selection up to 100 for both the algorithms. For
Random-MP, we repeat the experiment 10 times with different
seeds for increasing deployment sizes in themultiple of 5. Figure 1(a)
and (b) shows the results of the coverage achieved by the two
algorithms on the San Francisco (SF) and Rome dataset respectively.
As seen, a few cabs can cover significant portions of the two cities.
For example, 40% coverage can be achieved with just 55 cabs for
SF and 68 cabs for Rome through the use of MaxPoints algorithm.
In both the cities, Random-MP performs worse than MaxPoints.
However, the difference is insignificant in Rome.

4 RELATEDWORK
Prior work has looked at drive-by sensing for measuring the health
of our cities. Examples include, monitoring traffic congestion [7],
detecting potholes [3], sensing air quality [5], recognizing unsafe
pedestrian movement [2], recording parking violations [6] etc.

5 CONCLUSION
In this paper, we presented a system to plan a drive-by sensing
deployment in a new city. The users of our system provide data of
the routes taken by a large number of vehicles (cabs, buses, etc).
The system then allows the user to choose a subset of the vehicles
they would like to deploy. It then compares the coverage obtained
against that of the subsets chosen by our baseline algorithms.
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