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Air pollution adversely impacts public health. The National Capital Region (Delhi-NCR) is among the most
polluted urban areas in the world. One component of air pollution is PM2.5, which accounts for around
80% of deaths due to air pollution. Solutions for lowering PM2.5 levels in Delhi have been ineffective due
to their unscientific design. In this article, we build a mixed-methods model that captures the interplay of
various factors—geographical, chemical, meteorological—that contribute to the concentration of PM2.5. Using
domain knowledge and KDE sampling from NASA’s GEOS-CF dataset, we identify the major sources of each
of the seven constituents of PM2.5. From the 68 sources thus selected, we run the NOAA’s HYSPLIT wind
dispersion model to track the movement of released particles to the sink, i.e., Delhi. Using the concentration
of pollutants at the sources and by tracking their movement, we can predict the PM2.5 levels at the sink and
identify polluting sources. Our model performed significantly better than the baseline fixed-effects model
and captured seasonal variations in all seven constituents of PM2.5. It also uncovered the impact of polluting
sources hundreds of kilometers away on the air of Delhi. Policymakers can use such a model to design data-
driven policy interventions.
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1 INTRODUCTION

Air pollution is an increasingly dangerous health hazard. It causes short-term effects such as
headache, throat inflammation, and skin irritation, as well as long-term effects including respi-
ratory and cardiovascular diseases. Globally, 4–10 million deaths are attributed to air pollution
each year, making it the largest environmental hazard causing premature deaths [17, 29]. More
than 90% of these pollution-related deaths happen in low- and middle-income countries [29]. In
India alone, over 1.5 million deaths are attributed to air pollution each year [29]—greater than the
official number of deaths caused by Malaria, Tuberculosis, AIDS, and COVID-19 combined. The
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capital of India, Delhi, lies in the Indo-Gangetic plain, which is among the most polluted areas in
the world [4].

Being densely populated and the capital of India, Delhi and the surrounding National Cap-

ital Region (Delhi-NCR) has attracted considerable national and international media attention
year after year, highlighting the city’s poor air quality [7, 40, 49]. Due to this public health hazard,
governments and civic authorities in the state have initiated and encouraged a host of air pollu-
tion control measures. For instance, the Delhi government introduced the Odd-Even vehicle rule
in 2016 that allows only vehicles with even number plates to ply the road on even calendar dates,
and similarly for odd dates [42]. Similarly, local politicians have installed large-scale air purifiers
in densely populated areas of the city [13, 35]. While these interventions are made in good faith,
they have not been successful in reducing pollution levels in the city, leading to public debates
about their effectiveness. For example, the Odd-Even traffic rule was judged ambiguous [28] and
ineffective [8] because the main source of pollution was not vehicular traffic but other activities
such as crop residue burning and construction. Similarly, it is widely accepted that air purifiers
are useful for improving air quality in indoor spaces but are unscientific and ineffective when de-
ployed to clean open outdoor spaces [22, 39]. To create effectual change, there is a need to use
data-driven methods to not just evaluate interventions post hoc but to design them in the first
place. A plethora of past work has designed models to forecast air quality [4, 10, 11, 33], but these
models do not identify polluting sources, rendering them futile for designing interventions. Other
works [19, 45, 50] identify polluting sources but do not provide a model to design policy.

To design policy interventions, it is important to identify polluting sources [32]. This requires
modeling the interplay of the various factors affecting air quality in a city. We classify these factors
as: (1) geography, (2) chemistry, and (3) meteorology. The rise (or fall) in air pollution can be a result
of a change in any of these factors. For example, in July–October, monsoon winds blow into India
from the southwest, thereby carrying dust from the Thar Desert into Delhi. As a result, during
these months, PM2.5 concentration in Delhi is primarily due to its geography and meteorology (the
effect of wind). Our model is a cross-disciplinary collaboration between environmental scientists
who understand the factors affecting air pollution and computer scientists who can access and
analyze large amounts of remote sensing data efficiently.

In this article, we present PollutionMapper,1 a source-identification model that tracks pollutant
particles from their sources and captures the geographical, chemical, and meteorological factors
affecting the PM2.52 concentration at a “sink” location. In this article, we define our sink as Delhi,
but with local knowledge, our approach can be extended to any other city in the world. We focus
on modeling PM2.5 over other air pollutants (e.g., PM10), because it is responsible for the majority
of deaths from air pollution. PollutionMapper uses a mixed-effects model so we can account for
group identities in PM2.5 data occurring due to seasonality and meteorology. We use NASA’s
GEOS-CF dataset [27] to identify 68 sources of pollution and use NOAA’s HYSPLIT wind dispersion
model [47] to track the movement of particles from the sources to the sink (Delhi). We build seven
such models, one for each of the seven constituents of PM2.5. Each model predicts the hourly
concentration of the PM2.5 constituent at Delhi. While other models may predict/forecast PM2.5
better, our main contribution is that PollutionMapper can identify polluting sources, which allows
policymakers to focus their attention on those sources.

Our results show that the mixed-effects model generally outperforms the baseline fixed-effects
model and is able to capture seasonal variations in PM2.5 variations. A feature importance analysis
of the model reveals the effect of sources such as Singrauli and Saharanpur, which are hundreds of

1Our code is available at: https://github.com/agdhruv/PollutionMapper
2PM2.5 refers to particulate matter that has an aerodynamic diameter <2.5 microns.
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kilometers away, on the PM2.5 concentration of Delhi. Such a model can help policymakers test
interventions in a way that considers all the important factors affecting air pollution. For example,
before implementing the Odd-Even vehicle rule, the Delhi government could preemptively test its
impact on the city’s air quality. Moreover, such a model could help reveal novel interventions by
uncovering the impact of unexpected polluting sources on the city.

The rest of this article is organized as follows: In Section 2, we provide some background by ex-
plaining the geographical, chemical, and meteorological factors affecting air pollution. In Section 3,
we use this background to build our source-identification model. We then explain the evaluation
methodology for the model in Section 4 and present results in Section 5. Finally, we discuss related
work and conclude with a summary and the limitations of our work.

2 BACKGROUND

PM2.5 is a combination of seven constituents: sulphates, nitrates, organic carbon (OC), sec-

ondary organic aerosols (SOA), black carbon (BC), dust (Du), and sea salt (SS). We use the
following respective shorthand for these constituents, in part to emphasize throughout the article
that these are constituents of PM2.5: PMSu, PMNi, PMOC, PMSOA, PMBC, PMDu, PMSS. We separately
model the three factors—geography, chemistry, and meteorology—that affect the concentration
of these PM2.5 constituents. For this, we use domain knowledge and use knowledge from atmo-
spheric chemistry. The plots in this section are derived from various datasets (e.g., GEOS-CF [27],
GPW [12], NPP [36]); all these datasets are described in Section 3.1.

2.1 Geography

India generates most of the air pollution that plagues it. This is because of two main reasons. First,
India is a peninsula—the southern half of the country is surrounded by ocean on three sides and no
air pollution originates in the ocean. Second, the Great Himalayan range, which runs throughout
India’s north and northeast, acts as a barrier against wind and pollution originating in the industry-
heavy Republic of China. In fact, even before being blocked by the Himalayas, the wind from
China is blocked by the Tibetan plateau due to its average elevation of 4 km above sea level. The
remaining part of the Indian subcontinent between the Himalayas and the oceans consists of a
few other countries apart from India—Nepal, Bhutan, Bangladesh, Pakistan, and Sri Lanka. These
countries are small in comparison to India and are agro-economies, so they do not produce a lot
of air pollution.

Using domain knowledge, it is possible to identify the sources responsible for each of the seven
constituents of PM2.5. Because India produces its own pollution, this means that to model air
pollution in India, we need to identify the polluting sources mostly within India (and a few neigh-
boring countries at most). Broadly, we identify four main polluting sources in India: thermal power
plants, steel plants and other industries, biomass burning, and human activity (e.g., traffic, diesel
generators). These four types of sources are shown in Figure 1 and explained in detail below.

2.1.1 Thermal Power Plants. Long-running (legacy) thermal power plants in India use coal to
generate power. Most of them use Indian coal, which is sulphur-rich and low in carbon content.
Hence, many of these power plants in India are located in and around the mineral-rich Chhota
Nagpur region in central India. Proximity to minerals reduces the transport cost of raw materials
required to generate electricity. Some of the newer thermal power plants in India use coal imported
from Australia and Indonesia. Hence, these are located near the coasts for easy access to ports. They
are less polluting because they use carbon-rich imported coal.

2.1.2 Steel Plants and Other Industries. Other polluting industries such as steel and cement
plants also depend on mineral ore for raw materials. So, they are also located close to the Chhota
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Fig. 1. The four major polluting sources modeled in our article. For power plants, we have plotted the thermal
power production data across India on a random day [36]. For steel plants, we have plotted the production
capacity of steel plants in India [34]. For biomass burning, we have plotted active fire data from NASA VIIRS
data. And for human activity, we have used population density data [12] in 2020 as a proxy.

Nagpur region in central India. Additionally, these industries tend to be closer to the coasts to
reduce their transportation costs of importing other raw materials or exporting finished products.
Hence, these industries are concentrated slightly east of the Chhota Nagpur region, closer to India’s
east coast (bordering the Bay of Bengal).

2.1.3 Biomass Burning. Biomass burning is prevalent in mainly two regions. Punjab in the
northwest is an agriculture-heavy state. Farmers burn crop residue to clear their lands at the culmi-
nation of each harvesting season. Due to Punjab’s proximity to Delhi, this crop residue burning

(CRB) has a major impact on Delhi’s pollution and has attracted much research attention from
environmental scientists [4]. Biomass burning is also common in the northeastern states where
dense forests are victim to forest fires.

2.1.4 Human Activity. Finally, human activity also causes pollution. In urban areas, the com-
mon sources are petrol and diesel vehicles, diesel generators during power cuts, and construction
activity. In urban areas, people burn firewood (biomass) to cook food or keep their houses warm
in the winter. Since it is difficult to find data sources for such quotidian tasks, we use population
density as a proxy for human activity. Densely populated cities are spread throughout the country
with no pattern.

2.2 Chemistry

Polluting sources usually release primary pollutants such as gases (e.g., SO2, NO2) and hydrocar-
bons. Primary pollutants are short-lived and react in the atmosphere to form secondary pollutants
such as PMSu and PMNi. Secondary pollutants are solid, persist in the atmosphere for longer dura-
tions, and travel long distances with the wind. These reactions happen all the time and are complex
to model from first principles. In this section, we describe our method of modeling each of the seven
constituents of PM2.5 using domain knowledge from atmospheric chemistry (later summarized in
Table 1).

Figure 2(a) shows the proportions of the seven constituents of PM2.5 in the India++ region.3

Overall, just four constituents (PMNi, PMSu, PMSOA, PMOC) account for 80%–85% of the PM2.5 con-
centration in the region. PMDu and PMSS are seasonal, as they are brought in by the monsoon winds,

3In this article, our study area is the India++ region, a rectangular region consisting of the Indian sub-continent and south-

ern China. The corners of this region in the Mercator projection are: llcrnrlat=4.75, llcrnrlon=67.0, urcrnrlat=38.0, urcrnr-

lon=97.25.
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Fig. 2. (a) shows the proportions of the seven constituents of PM2.5 in the India++ region (see footnote 3).
(b) shows the 68 locations selected as polluting sources, as explained in Section 2.1.

Fig. 3. This figure shows the concentration of NO2, O3, and nitrates in the India++ region at the same time.
(a) shows that NO2 is concentrated in cities and industrial areas. (b) shows that the concentration of O3

is lower wherever NO2 is higher—the brightest spots in (a) match the darkest spots in (b). This depicts the
oxidation of NO2 by ozone to form nitrates. (c) shows that, unlike NO2, nitrates are widespread, because
they are solid particles and are carried away by wind.

hence the high variability in the box plot for these two constituents. They are also comparatively
stable and less harmful. PMBC has a very low proportion but is very harmful.

2.2.1 Sulphates and Nitrates. SO2 and NO2 are released in the atmosphere by polluting sources,
which oxidize in the presence of atmospheric oxygen (O2) and ozone (O3) to form PMSu and PMNi,
respectively. Fortunately, sources of SO2 and NO2 are concentrated and easily identifiable. SO2 is
released primarily by thermal power plants that use sulphur-rich Indian coal. NO2 is released by
diesel engines used in industries and diesel generators in cities. As discussed in Section 2.1, the lo-
cations of these sources are well-defined. Since PMSu and PMNi behave similarly in the atmosphere,
we explain their chemistry using the example of nitrates.

Visualization of GEOS-CF data in Figure 3(a) confirms that NO2 is concentrated in cities and
industrial regions. However, nitrates are spread across the country. This is because, unlike NO2,
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Fig. 4. This figure shows fires over three years and the sum of CO and PMOC concentration over three years
in the India++ region. Since PMOC is released directly into the atmosphere during the combustion of biomass
or diesel, we see that the PMOC plot is bright where either the fires plot or the CO plot is bright.

nitrates are chemically inert solid particles that travel long distances, depending on the direction
and intensity of wind (Figure 3(c)). Figure 3(b) shows the concentration of ozone on the same day.
Note that the concentration of ozone is low where the concentration of NO2 is high.4 This behavior
shows that nitrates are formed when NO2 oxidizes in the presence of ozone.

Hence, using the concentration of SO2 and NO2 at their source and wind dispersion pattern to
track their travel, we can predict the concentration of PMSu and PMNi at the sink.

2.2.2 Organic Carbon. Unlike other constituents of PM2.5, PMOC is released directly into the
atmosphere. It is not a secondary pollutant formed after reacting in the atmosphere. There are two
major sources that release PMOC into the atmosphere: biomass burning and combustion of diesel,
e.g., diesel engines used in agriculture.

We use NASA Fires data to conveniently identify biomass burning. Identifying diesel combus-
tion is more complicated, because there is no good proxy to identify the combustion of diesel.
Fortunately, there is a good proxy for combustion—carbon monoxide (CO), which is formed due
to incomplete combustion. The presence of CO signifies combustion, which in turn suggests that
PMOC may also have been released during that combustion event. Note that carbon monoxide does
not react to form PMOC, instead, it is (positively) correlated to PMOC. Hence, we use it as a proxy to
identify the release of PMOC into the atmosphere. Figure 4 shows the concentration of CO, PMOC,
and fires summed over three years. Notice that the PMOC plot is brighter where fires or CO plots
are brighter.

Hence, using fire data and concentration of CO, and wind dispersion to track travel, we can
predict the concentration of PMOC at the sink.

2.2.3 Secondary Organic Aerosols. PMSOA is a secondary pollutant that is formed when organic
carbon (PMOC) travels over long distances and, over time, reacts to form PMSOA. One of the main
chemicals it reacts with, to form PMSOA, is ammonia (NH3). Hence, the presence of both NH3 and
PMOC is needed for the formation of PMSOA. Figure 5 shows the concentration of NH3, PMOC, and
PMSOA summed over three years. Note that PMSOA is bright in the northeast region where both
NH3 and PMOC are bright. However, the concentration of NH3 is very high in the Punjab region,
but, since PMOC is lesser in that area, the resulting concentration of PMSOA is also lesser.

4We use this simplified inverse view of the relationship between NO2 and O3. In reality, this relationship is complex and

depends on the relative availability of NO2 and volatile organic compounds.
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Fig. 5. This figure shows the sum concentration of NH3, PMOC, and PMSOA over three years in the India++
region. PMOC reacts with ammonia to form PMSOA. Hence, we see that PMSOA (sub-figure c) is bright when
both NH3 and PMOC are bright, for example, in the northeast region.

Hence, using the concentration of PMOC and NH3 at the source, and wind dispersion to track
travel, we can predict the concentration of PMSOA at the sink.

2.2.4 Dust, Sea Salt. PMDu and PMSS are chemically stable, so they do not react during travel
from one location to another. They are simply picked up by the wind from one location and de-
posited in another location. Figure 6(a) shows that during the monsoon season (June–September),
winds blowing from the southwest carry PMDu from the Thar Desert (Rajasthan) into Delhi/NCR.
These monsoon winds also carry PMSS from the ocean into mainland India. Figure 6(b) shows the
PMSS concentrations just before the monsoon season, and Figure 6(c) shows PMSS concentrations
12 days later at the onset of monsoon. These two figures show the movement of PMSS from the
oceans to India’s mainland with the monsoon winds.

Because of their chemically stable nature, PMDu and PMSS can be very directly modeled using
their concentration and wind dispersion data to track their movement.

2.2.5 Black Carbon. PMBC is a harmful pollutant that has similar sources as PMOC. PMBC is
released when PMOC is released, albeit in much lesser quantity. Figure 7(a) shows the strong cor-
relation between PMBC and PMOC (Pearson’s r = 0.99). This is good news, because now we do
not need to model PMBC separately. Hence, we can model PMBC in the same way that we model
PMOC— using fire data and concentration of CO.

2.3 Meteorology

Air movement in the earth’s atmosphere is caused due to gradients. Horizontal movement
is generally caused due to a pressure gradient, causing winds to blow from high-pressure to
low-pressure areas. Winds carry solid particulate matter (PM) over long distances, affecting the
air quality of locations on the way. Vertical air movement is caused due to temperature gradient.
These vertical convection currents dilute the concentration of PM near the earth’s surface. In
special atmospheric conditions called temperature inversion, vertical currents are impeded,
causing PM to be trapped near the surface. Below, we explain our modeling of temperature
inversion (vertical) and winds (horizontal).

2.3.1 Temperature Inversion. In normal atmospheric conditions, the air gets cooler as we go
higher up from the earth’s surface. This temperature gradient causes convection currents, which
diffuse the particulate matter near the earth’s surface over a large volume of air. However, during
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Fig. 6. This figure shows the concentration of dust (PMDu) and sea salt (PMSS) in the India++ region during
India’s monsoon season. (a) shows the monsoon winds blowing from the southwest carrying PMDu particles
from India’s Thar Desert (the bright spot) into Delhi. (b) shows the concentration of PMSS before the onset of
monsoon. (c) shows the higher concentration of PMSS in mainland India just 12 days later, once the monsoon
season has begun.

Fig. 7. (a) Correlation between Organic Carbon and Black Carbon over a random month in our study period.
(b) shows smog trapped close to the earth’s surface in Almaty, Kazakhstan, during a temperature inversion.
Photo credits to Igors Jefimovs on Wikipedia under CC BY 3.0 license.

the winter season (and at night), the earth cools very quickly due to its higher thermal mass than air.
Air near the earth’s surface gets cooler and is trapped by a layer of warmer air above it. This causes
an inversion in the temperature gradient, shutting off convection currents. This phenomenon is
called a temperature inversion.

Temperature inversion has a multiplicative effect on the PM concentration of a particular loca-
tion. It causes an “envelope” to form over the earth’s surface, which traps all air and its PM near
the surface, as shown in Figure 7(b). Since temperature inversions are more common during the
winter months, the air pollution problem in Delhi intensifies during the winter months. In Pollu-
tionMapper, we account for this phenomenon by incorporating the planetary boundary layer

height (PBLH), which is the height in meters of the first temperature inversion in the atmosphere.
The lower the PBLH, the lesser volume there is for particulate matter to diffuse in, and therefore
there is a higher PM concentration closer to the earth’s surface. Figures 8(a) and (b) show the sum
of PM2.5 concentration and mean PBLH for a winter month (January 2018). On comparing the two
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images, we see that PM2.5 is lower wherever the PBLH is higher. Most noticeably, a higher PBLH
in the Tibetan plateau (north of India) causes a low PM2.5 concentration in the region.

2.3.2 Wind Dispersion. As discussed in Section 2.2, given the concentration of pollutants at
their sources of release, we can track their transport through the atmosphere to the sink. To track
pollutant particles through wind, we use NOAA’s5 HYSPLIT model [47], which uses Lagrangian
simulations to track the air particle movement. HYSPLIT has two models: trajectory and disper-
sion. The trajectory model determines the trajectory of air parcels through the atmosphere. The
dispersion model, which we use, computes the dispersion of pollutant particles through the ambi-
ent atmosphere. HYSPLIT’s dispersion mode is often used to track volcanic ash and wildfire smoke
to plan relief efforts. Further, the HYSPLIT dispersion model allows forward and backward simula-
tions. A forward run in dispersion mode computes how air particles released from a source location
will disperse in the atmosphere in the hours to come. A backward run computes the opposite: how
the air particles arriving at a receptor location (the sink) were dispersed in the atmosphere on their
way to this location, hours before they actually reached the sink.

In our formulation, we run the HYSPLIT dispersion model in both forward and backward modes.
We run it in the forward mode from the 68 selected polluting sources in the India++ region; we
release particles from each source every day and track the dispersion of particles for the next
48 hours (2 days). We also run the dispersion model in backward mode at the sink (Delhi) every
hour and track where the particles there are coming from over the last 168 hours (7 days).67 These
HYSPLIT runs output the position (latitude, longitude, height) of air particles leaving the sources
(forward mode) and those coming into the sink (backward mode).

Then, we look for instances of confluence: an event where a particle originating from any pollut-
ing source (identified from HYSPLIT forward run data) collides with a particle flowing into the sink
(identified from HYSPLIT backward run data); this is depicted in Figure 8(c). Note that, since it is
computationally infeasible to identify exact collisions of particles (at the exact latitude, longitude,
and height), we “gridifiy” the atmosphere by using discretizations specified in the GFS dataset.8

The existence of a confluence then suggests that a pollutant particle released from a source trav-
eled to the sink. In this setup, a pollutant may travel up to nine days after its release from a source
to reach the sink (after two days of forward dispersion, the particle may collide with a particle
from backward dispersion, which may travel up to seven days to reach the sink).

3 POLLUTIONMAPPER: GLOBAL MODEL

In the previous section, we discussed the geographical, chemical, and meteorological factors af-
fecting air pollution. We observed that India has limited pollution sources, which we classified as
thermal power plants, steel plants, biomass burning, and human activity. Then, we identified the
seven constituents of PM2.5 and described how we can model each of them based on the concen-
tration of pollutants at the polluting sources. Finally, we described the meteorology—wind and
temperature inversion—that affects PM concentration on the earth’s surface.

5National Oceanic and Atmospheric Administration.
6The reason to do both forward and backward runs to track particle dispersion from the sources to the sink is the compu-

tational complexity of HYSPLIT simulations. The trivial way would be to release particles at the source and see if they end

up at the sink. However, due to the volume of the atmosphere, the chances of this happening in a simulation with a small

number of particles are very low.
7The atmospheric residence time of PM2.5 is 3–5 days [48]. So, we allowed the particles emitted from the source to travel

for two days (their “peak,” after which they would start to get removed from the atmosphere) and then gave a long 7-day

buffer for these particles to travel to the sink.
80.25◦ × 0.25◦ for latitude and longitude and a non-uniform discretization for altitude/height.

ACM Journal on Computing and Sustainable Societies, Vol. 2, No. 1, Article 7. Publication date: January 2024.



7:10 D. Agarwal et al.

Fig. 8. (a) shows the sum of PM2.5 concentration (combined across the seven constituents) in the India++
region in January 2018. (b) shows the mean planetary boundary layer height (PBLH) in the India++ region in
January 2018. Noticeably, the PM2.5 concentration is high (bright) where the boundary layer in low (dark) and
vice versa. (c) depicts a confluence of particles originating from two polluting sources (Jaipur and Singrauli)
with the particles flowing into the sink (Delhi).

Table 1. The First Two Columns Show the PM2.5 Components
and Their Predictors

Constituent
Predictors

(at 68 sources)
No. of Features

Sulphate (PMSu) SO2

1 × 68 × 9 = 612
Nitrate (PMNi) NO2

Dust (PMDu) Dust
Sea salt (PMSS) Sea salt

Organic
Carbon (PMOC)

CO
Active Fires

2 × 68 × 9 = 1,224SOA (PMSOA)
NH3

OC
Black
Carbon (PMBC)

CO
Active Fires

Predictors are the pollutants used in our regression model to predict

the respective PM2.5 constituent. The last column shows the number of

features used in the training data for the respective constituent.

Number of features = number of predictors × number of polluting

sources (68) × number of days of wind dispersion (9).

In this section, we assemble the three factors discussed in the previous section into a source-
identification model. We build the model in three steps. First, we describe data sources for the
predictor pollutants (e.g., SO2, NO2) or their proxies (e.g., population density, fires). Then, we sam-
ple from this data to select source locations. Finally, we put everything together to define the

feature set for predicting PM2.5 constituents at the sink. In the next section, we input these fea-
tures into different models to predict PM2.5 at the sink (Delhi).

3.1 Pollutant Data Sources

In Sections 2.1 and 2.2, we defined predictors for each of the seven constituents of PM2.5. The
constituents and their predictors are summarized in Table 1. We used NASA’s GEOS-CF forecast
dataset [27] for most of our predictor pollutants. GEOS-CF is an atmospheric composition forecast

ACM Journal on Computing and Sustainable Societies, Vol. 2, No. 1, Article 7. Publication date: January 2024.



PollutionMapper: Identifying Global Air Pollution Sources 7:11

from NASA, which uses an atmospheric chemistry transport model called GEOS-Chem for gener-
ating the forecasts. It is commonly used for estimating pollutants (e.g., Reference [31]). This data
is available at an hourly temporal granularity and 0.25◦ × 0.25◦ spatial granularity (∼ 25 km × 25
km at the equator). The only predictor data we use that is not measured by GEOS-CF is active-fires
data, for which we use NASA’s VIIRS dataset. Finally, to compute wind dispersion, we use NASA’s
HYSPLIT model [47], which internally uses meteorology data from the GFS (Global Forecast

System) model from the United States National Weather Service. The GFS dataset also provides
us with PBLH data that we use to model temperature inversion.

In addition to the data for the predictor pollutants, we used other data sources for selecting the
68 source locations. To identify the power plants in India (sources of SO2), we fetched data from
the National Power Portal of India [36]. To identify the major steel manufacturing plants in India
(sources of NO2), we used the Global Energy Monitor data [34]. To identify the population density
as a proxy for human activity (source of NO2), we used the NASA Gridded Population of the

World (GPW) v4 dataset [12]. Some of these datasets are available at different spatial granularities.
Hence, to make these datasets usable in conjunction with GEOS-CF data, we re-aligned all of them
to the same 0.25◦ × 0.25◦ spatial grid used by GEOS-CF. Next, we explain how we use the data
from these data sources to select the 68 polluting source sites.

3.2 Source Locations Selection

A key observation in our work is that there are few sites in the country that are responsible for
releasing the most pollutants. In this section, we describe our process of selecting these polluting
sources around the country. We used a two-dimensional probability density function on the data
sources described above, supplemented by domain knowledge described in Section 2.1, to select
pollution sources in the India++ region. For example, to select major sources of PMNi, we plotted
the gridded data for the predictors and proxies of nitrates—NO2, population density, and steel
plants data—and sampled the “bright spots” from these plots. However, since we needed to perform
forward HYSPLIT runs for all the selected sources, which is computationally expensive, instead
of sampling blindly, we applied domain knowledge in the sampling process. We preferred sites
that were closer to Delhi. We also preferred sites that came up as sources of multiple pollutants
(e.g., thermal power plants release both PMSu and PMNi). We also manually discarded sites that
were spatially close to other sites that we had already sampled, because the wind blowing in these
locations would have similar dispersion patterns. We repeated the sampling process for all seven
constituents of PM2.5, selecting source sites for each pollutant. We stopped sampling when we
thought that the selected sites adequately covered the main polluting regions, giving us a total of
68 source locations shown in Figure 2(b).

3.3 Building the Feature Set

Now, we discuss the feature set for predicting the seven constituents of PM2.5 at the sink. After
selecting the source locations and computing the confluence of wind particles originating from
these locations and flowing into the sink, we used this data to create our feature set. As summarized
in Table 1, the number of features for each of the constituents is defined by three quantities: the
number of predictors for the constituent, the number of source locations (68), and the number of
days for which a particle can travel from the source to the sink (9 days). We have different features
for different travel durations (up to 9 days), because some pollutants take time to react and form
particulate matter. For example, air particles that traveled for nine days may have more PMSu than
air particles that traveled for one day, which may have more SO2.

So, for instance, there are 2 × 68 × 9 = 1, 224 features for predicting PMSOA at the sink, as there
are two predictors for SOA: ammonia (NH3) and organic carbon (PMOC). Air particles carrying
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NH3 and PMOC travel from the 68 selected sources for up to 9 days to reach the sink. Hence, the
features for the PMSOA model are:

OC_source1_day1,\ldots, OC_source1_day9,\ldots, OC_source68_day1,\ldots, OC_source68_day9,
NH3_source1_day1,\ldots, NH3_source1_day9,\ldots, NH3_source68_day1,\ldots, NH3_source68_day9

In our prediction task, we predict the concentration of each PM2.5 constituent at Delhi (the sink)
every hour. So, the feature set has a value for each of these features every hour for three years.
The value of a feature predictor_sourceS_dayD at time t is defined as follows: If we found a
confluence (i.e., if particles originating from S traveled to the sink in h hours such that �h/24� = D
and the particle reached the sink at time t ), then the value of the feature is the concentration of
the predictor D days before t at location S . If a confluence was not found, then the value of the
feature is zero. Intuitively, this means that the value of the feature is non-zero if the wind carried
the pollutants from the source S to the sink over D days.

4 EVALUATION METHODOLOGY

In this section, we explain the experimental setup used to train the models and the evaluation
metric used to compare the models.

4.1 Experimental Setup

We created a regression task to predict the concentration of each of the seven constituents of
PM2.5 at the sink at an hourly granularity using the features explained previously. We used four
regression algorithms to train our model: linear regression (LR), Light Gradient-Boosting

Machine (LGBM) [26], k-Nearest Neighbors (KNN), and Random Forest (RF). We used
the implementations provided by Scikit-learn [38] with default parameters for LR, KNN, and RF
(200 estimators). For LGBM, we used the implementations provided by the lightgbm Python pack-
age with default parameters.

Next, we note that it is not enough to look at the individual predictors at the source locations:
We must also account for the group identities within that data. In other words, we must account
for the existence of random effects in this data. Hence, in addition to the baseline fixed-effects
models, for each algorithm, we also train two mixed-effects models, one with the month identifier
as the group and another with the planetary boundary layer height (PBLH) as the group. The
month group accounts for the seasonality of PM2.5 pollutants. The PBLH group accounts for the
effect of temperature inversion on the dispersion of air pollution. Since PBLH is a continuous
height value, we discretize it into eight buckets. We used the MERF Python package, which uses an
expectation-maximization algorithm, to train the mixed-effects models. To improve the robustness
of our predictions, we trained each model using 10-fold cross-validation.

4.2 Evaluation Metric

We used Mean Absolute Percentage Error (MAPE) to evaluate our models. MAPE is a com-
monly used metric to measure the prediction accuracy of regression models. It represents the
average of the absolute percentage errors made on each prediction. MAPE is a popular metric be-
cause it scales the error to percentage units, which makes it intuitive to interpret (lower MAPE is
better). MAPE for a regression model is calculated as follows:

MAPE =
100%

n
·

n∑

t=1

�
�
�
�
�

yt − ŷt

y

�
�
�
�
�

,

where, yt is the actual value, ŷt is the predicted value, y is the mean of actual values, and n is
the number of predictions. Note that this is actually a modified version of MAPE called weighted
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Table 2. MAPE (in %) for the Four Regression Algorithms with Only Fixed-effects and Two Kinds of
Mixed-effects (Month and PBLH)

Fixed Effects Mixed Effects (Group: Months)

Ni Su OC SOA Du SS BC Ni Su OC SOA Du SS BC

LR 56.11 26.25 36.86 30.27 60.46 40.48 41.62 50.57 25.23 33.69 28.38 56.26 36.34 38.91

LGBM 33.86 15.87 23.33 19.35 27.77 19.66 27.61 33.01 15.72 22.99 19.04 27.35 18.89 27.07

KNN 24.93 9.94 17.39 12.44 13.57 9.73 20.62 25.21 10.0 17.49 12.52 13.92 9.72 20.73

RF 26.38 9.91 17.59 13.83 17.08 13.11 20.72 26.12 9.87 17.49 13.82 17.39 12.85 20.55

Mixed Effects (Group: PBLH)

Ni Su OC SOA Du SS BC

LR 46.95 26.18 28.0 26.82 59.33 40.19 33.41

LGBM 31.74 15.81 20.33 18.09 27.71 19.72 24.88

KNN 22.89 9.87 15.56 11.99 17.5 11.04 18.92

RF 23.34 9.89 15.18 12.63 18.24 13.57 18.65

We use KNN for the rest of our experiments. For KNN, the better-performing mixed-effects group for each constituent

is highlighted in green. KNN’s MAPE for the “overall” PM2.5 (i.e., sum across all seven constituents) is 14.74%. The

variance of the chosen models (green cells) in %: Ni: 8.54, Su: 4.16, OC: 2.88, SOA: 2.86, Du: 59.32, SS: 16.63, BC: 4.11.

MAPE. The original MAPE formula uses yt (the actual value) in the denominator, whereas we use
y (mean of actual values) in the denominator. This avoids a division by zero error if yt = 0 for
some t .

5 RESULTS

In this section, we present the findings from our analysis. While PollutionMapper shows promising
results, we emphasize that it is not designed to be a PM2.5 forecast model but a source identification
model. Hence, the validation results shown in the first three subsections below are only intended
to establish the legitimacy of the model. With a strong model, we then demonstrate in the last
subsection how our model can be used to identify pollution sources and therefore affect policy.

5.1 Comparison with Fixed-effects Model

Table 2 shows the MAPE for the different regression algorithms with fixed-effects (FE) and two
kinds of mixed-effects (ME-PBLH and ME-Month). First, we note that linear regression generally
performs the worst, and random forest performs the best (lowest MAPE) for both FE and ME
models. However, random forest is computationally very expensive and infeasible to train with
such a large feature set. Hence, we use the KNN model for the rest of our experiments, whose
MAPE is comparable to that of random forest, and sometimes even lower.

We found that the ME models generally outperform the FE model, validating our hypothesis
of the existence of mixed effects in the concentration of PM2.5 constituents. Further, we observe
that the ME-PBLH model outperforms the ME-Month model for all constituents except PMSS and
PMDu. This is due to the seasonal nature of sea salt and dust, which are blown into mainland India
with the monsoon winds. For other constituents, the effect of PBLH is more pronounced than the
effect of the month. This shows the importance of accounting for temperature inversions when
designing policy to combat air pollution caused by PMSu, PMNi, PMOC, PMSOA, and PMBC.

The caption of Table 2 also shows the variance of absolute percentage errors of the chosen mod-
els for each constituent. We see a small variance in all constituents except PMSS and PMDu. Unlike
other constituents that have shorter trend cycles (e.g., daily, monthly) these two constituents have
a seasonal nature. This makes it hard for the model to identify trends and therefore results in a
higher variance.

Table 3 shows the p-value and effect size of the improvement in MAPE from FE to ME models.
Due to the aforementioned seasonal nature of PMSS and PMDu, we compare the FE model with
the ME-Month model for these two constituents, and with the ME-PBLH model for all the other
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Table 3. P-value and Effect Size of Improvement in MAPE across FE and ME Models

p-value Cohen’s d

Ni Su OC SOA Du SS BC Ni Su OC SOA Du SS BC

LR 0.0 0.168 0.0 0.0 0.0 0.0 0.0 9.07 0.67 8.11 5.61 3.34 3.72 14.49
LGBM 0.0 0.236 0.0 0.0 0.050 0.0 0.0 2.96 0.15 7.53 3.14 0.50 0.90 6.38
KNN 0.0 0.037 0.0 0.0 0.008 0.613 0.0 3.36 0.13 5.83 2.18 −0.24 0.03 3.84
RF 0.0 0.347 0.0 0.0 0.110 0.019 0.0 4.37 0.11 7.01 3.17 −0.20 0.64 6.02

For Sea Salt and Dust, we compare the MAPE of the FE model against that of the ME model with month group. For the

rest of the pollutants, we compare the MAPE of the FE model against that of the ME model with PBLH group.

constituents. We see that the improvement in model performance from FE to ME models is sta-
tistically significant and the effect size is also large for all constituents except PMSS and PMDu.
For these two constituents, the FE model outperforms the ME-Month model, indicating that a FE
model would be enough to predict their concentration at the sink.

5.2 Comparison against Measured Data

We now compare our model’s predictions against the PM2.5 data recorded by the Central Pol-

lution and Control Board (CPCB), the apex government authority responsible for pollution
control in India. For this comparison, we downloaded data from 35 CPCB sensors spread all over
Delhi for a period of two years (2019–2020). We compare our predictions against the mean of these
35 sensors. However, CPCB sensors report only the “overall” PM2.5 concentration, not the seven
constituents individually. Hence, we sum the predictions for the individual constituents to get our
“overall” PM2.5 prediction. We then compare the mean PM2.5 of the 35 CPCB sensors against this
sum.

When compared against CPCB data, the MAPE reported by our model is 56.78%. While the error
may seem like a lot, it is essential to note that CPCB sensors are on-ground and hence measure
local pollution values affected by local traffic, small fires, and so on. However, GEOS-CF forecasts
global pollution values, which renders this comparison unfair. This explanation is supported by the
fact that the MAPE between actual GEOS-CF values (not our predictions) and CPCB sensors itself

is 58.98%! Yet, we have presented this result for transparency and completeness. We re-emphasize
we are not trying to forecast PM2.5 in Delhi. There are better forecast models available, but they
do not identify specific pollution sources, which is the main contribution of our article.

5.3 Group-level PM2.5 Constituent Distribution

Figure 9 plots all the predictions from the ME-Month model for each constituent grouped by month.
In the plot, circles represent the mean, and error bars indicate ± 1 standard deviation. For most
constituents (PMNi, PMOC, PMSOA, and PMBC), we see a clear trend where their concentration
in Delhi increases in the winter months (October, November, and December). This is due to the
effect of temperature inversions in the winter months, which traps pollutants closer to the earth’s
surface, not allowing them to diffuse into the upper atmosphere.

The trend for PMSu is unexpectedly different. Their concentration rises sharply in June and
slightly in the months of January and September. Upon investigating this behavior, we suspect
that this is due to the higher electricity consumption in these months. June is extremely hot with
temperatures going up to 39 ◦C (102 ◦F); the onset of the monsoon makes the weather hot and
humid, causing people to use air coolers and air conditioners for long durations. September is
the withdrawal of the monsoon causing very high humidity, and January is the peak of winter
in Delhi. These conditions cause an increase in electricity demand during these months, which
requires the thermal power plants around Delhi to function at a higher capacity. This hypothesis
is further supported by power production data from the National Power Portal of India. The mean
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Fig. 9. Predictions from ME model (Group: Month).

Fig. 10. Predictions from ME model (Group: PBLH).

production by power plants around Delhi across three years is 3.27 mega units per day (MU/day),
but the mean in June is 4.41 MU/day, in September is 3.96 MU/day, and in January is 2.82 MU/day.
While the production in January is lesser than the yearly mean, the concentration of PMSu in
January remains high due to a lower PBLH in the winter.

For PMDu and PMSS, we see a spike in June, July, and August, which are the main monsoon
months in India. The spike is because monsoon winds originate from the Arabian Sea in the south-
west and cross the Thar Desert on their way to Delhi, therefby carrying dust into Delhi. Similarly,
sea salt is carried from the oceans to Delhi by monsoon winds.

These sets of results show that our ME-Month model and its feature set are able to capture the
seasonal variations in PM2.5 constituents such as sulphates, dust, and sea salt in Delhi. Interest-
ingly, the month group is also able to capture the effects of temperature inversion, likely due to
the correlation between the month of the year and the PBLH.

Figure 10 shows all the predictions from the ME-PBLH model for each constituent grouped
by the eight PBLH discretizations. For most constituents (PMNi, PMOC, PMSOA, and PMBC), the
concentration in Delhi is higher when the PBLH is lower, due to the envelope effect of a low
PBLH. PMDu and PMSS show an opposite trend where their concentration increases when the
PBLH is higher. This is because dust and sea salt are seasonal PM2.5 constituents that arrive in
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Delhi during June–September when the temperature is warmer and the PBLH is higher. Predictions
from the ME-PBLH model show no trend for PMSu. This may be because, as described above, due
to increased electricity production in summer and monsoon months, the concentration of PMSu

increases, which cancels out the effect of a higher PBLH. This nature of PMSu is captured by the
ME-Month model, which explains why the MAPE for PMSu does not improve much from the ME-
Month to the ME-PBLH models.

5.4 Feature Importance: Identifying Major Pollution Sources

It is important to not just predict the air quality in Delhi but to also know what are the major
sources responsible for this pollution. To find this, we performed a feature importance analysis of
our model, PollutionMapper. We used the SHAP Python library’s “KernelExplainer” class to conduct
our feature importance analysis. Acknowledging the seasonal nature of PM2.5 constituents as
found above, we conducted this analysis for different seasons, focusing on seasons in which Delhi
sees the most air pollution. Figure 11 shows the SHAP values of the top 20 features and is explained
below.

5.4.1 Dust in June. Figure 11(a) shows the feature importance for predicting the concentration
of PMDu in Delhi during the onset of the monsoon winds (June). We observe that all the top 20 most
important features are in the Thar Desert (Rajasthan) or in Karachi (Pakistan), both of which are
very dusty areas with dry climates. Both these areas are also to the southwest of Delhi, the same
direction from which the strong monsoon winds blow in June. Further, there are other sites in our
feature set that are southwest of Delhi but are not as dusty (e.g., Mundra in Gujarat) and hence do
not appear in the top 20 most important features. Conversely, there are dusty sites (e.g., Jaipur in
Rajasthan) that do not appear, as they are not in the path of the dominant direction of the monsoon
winds. These results show that incorporating the wind dispersion modeling using HYSPLIT was
useful to improve the predictive power of PollutionMapper.

5.4.2 Sulphates in Winter. Figure 11(b) shows the feature importance for predicting PMSu in
Delhi during the winter months. We see that 7 of the top 20 most important features are from
Singrauli (in Jharkhand, central-eastern India). Singrauli and its surrounding region have many
thermal power plants and other industries due to easy access to coal and minerals in that area.
Interestingly, our model was able to identify Singrauli even though it is more than 700 km away
from Delhi. Similarly, Koradi (in Maharashtra, central India) is also identified as an important
feature even though it is more than 800 km away from Delhi. Koradi also has a major thermal
power plant station. These results show that polluting sources even hundreds of kilometers away
have an impact on the PM2.5 concentration of Delhi.

5.4.3 Nitrates in Winter. Figure 11(c) shows the feature importance for PMNi in the winter sea-
son. We find that 10 of the top 20 features are from in and around Delhi itself, suggesting that
Delhi is responsible for a majority of its own concentration of nitrates. This indicates that local
policies such as the Odd-Even rule, suspension of construction activities, and so on, would be use-
ful in protecting the air quality of Delhi in this season. Surprisingly, there are six features from
Behat (in district Saharanpur, Uttar Pradesh), which is 170 km north of Delhi. On digging further,
we found that this region suffers from chronic power cuts and is a major agricultural belt, due to
which there is high usage of diesel generators in the area. There are also paper industries in the
area that release NOx (e.g., nitric oxide and nitrogen dioxide) into the atmosphere, which oxidizes
to form PMNi.

5.4.4 Effect of Lingering Secondary Pollutants. We observe in Figure 11(b) that 8 of the top 10
features for PMSu represent pollutants that have traveled to Delhi over a long duration (five or
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Fig. 11. Feature importance (SHAP values) for different PM2.5 constituents in different seasons. Winter is
defined as November, December, and January. “Kharif” and “Rabi” are the two major cropping seasons in
India. Kharif lasts from July to October, and Rabi from October to March. The beginning of each season is
preceded by crop residue burning to clear the land after harvesting the crop from the previous season.

more days), even from sources that are close to Delhi (such as Sonipat, Haryana). This means that
pollutants that took ≥ 5 days to reach Delhi were more responsible for the PMSu concentration in
Delhi than the pollutants that took fewer days. This shows that the longer SO2 remained in the
atmosphere after being released from the source, the more harmful it became by turning into PMSu.
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This observation is also true for PMNi in Figure 11(c), where also eight of the top 10 features rep-
resent long travel times. These results show that PollutionMapper is able to capture the chemical
reactions taking place in the atmosphere.

5.4.5 Secondary Organic Aerosols after Crop Harvesting. Figures 11(e) and (f) show the feature
importance of predicting PMSOA in October and May, the end of the two major crop harvesting
seasons in India. We chose to analyze feature importance in these seasons because crop harvests
are followed by CRB to clear the land for the next sowing season, leading to intense pollution
episodes in Delhi. In both these plots, we see that an overwhelming majority of the top 20 features
come from the agriculture-heavy state of Punjab (both in the Indian and Pakistani sides9), where
crop residue is burned during these months.

Recall that PMSOA is formed by the combination of a reacting gas like ammonia (NH3) and or-
ganic carbon (PMOC). Interestingly, we observe that features from India in both plots are almost
all ammonia and rarely PMOC. However, features from Pakistan are exclusively PMOC and never

ammonia. This is hardly a coincidence and is likely because the Indian government provides sig-
nificant farm subsidies on ammonia-rich fertilizers as compared to Pakistan. The overuse of these
fertilizers releases ammonia, which reacts with other organic matter to produce PMSOA.

6 RELATED WORK

Research around air pollution in computer science and related communities has revolved around
two broad themes: sensing and modeling. Sensing methods are aimed at collecting air pollution
data using static or dynamic sensor deployments. On the sensing side, past literature has focused
on several research problems that arise during the deployment of such sensor networks. These
problems include sensor placement [3, 37], calibration [14, 41], crowd-sourcing [1, 2, 30], and so
on. The data collected from such sensor networks are then used to model and predict air pollution
(e.g., References [4, 10, 11, 24]). Our work focuses on this latter thread of research, which we
summarize below.

6.1 Data-driven Pollution Modeling

Air pollution predictions are important for both government policy-making (e.g., designing poli-
cies for traffic control, banning construction activities) and everyday human decisions (e.g.,
whether to exercise or not) [33]. As a result, modeling air pollution has been an important re-
search endeavor in the environmental sciences. Prior literature classifies air pollution models as
one of three types [10, 30, 33]: deterministic, deep-learning based, and statistical.

Deterministic models predict air pollution based on the first principles of atmospheric chem-
istry. They use physical equations to model the emission, transport, diffusion, and chemistry of air
pollution [30, 33]. These models, such as CMAQ [11], are useful to understand the first principles
of air pollution. However, they have to account for many factors and therefore tend to be complex,
incomplete, inaccurate, and computationally heavy [10, 33] for prediction.

Recently, deep-learning-based methods are being utilized for air-quality prediction. These meth-
ods have been found useful to exploit the spatial and temporal correlations in the features using
convolutional neural networks (CNNs) [16] and gated deep neural networks (DNNs) [33].
Recurrent neural networks (RNNs) with long-short-term memory (LSTM) units have also
been popular to better utilize historical data in forecasting future air quality [10, 18, 24]. How-
ever, because deep-learning models are hard to interpret, such models are useful for air-quality

9The state of Punjab was divided into its Indian and Pakistani sides during the partition of the Indian subcontinent in 1947.
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forecasts, but not so much for source identification. However, our aim is to identify pollution
sources so policymakers can design directed policies to counter those sources.

Our work lies in the realm of statistical models. Statistical models use parametric or non-
parametric statistical or classical machine learning methods to predict air pollution. Their pre-
dictions are often based on observed measurements such as remote sensing datasets [5], weather
conditions, historical air pollution [6], topological features, and so on [30, 33]. Such models have
been popular due to the availability of such data and their interpretability. However, many of
these works examine the impact of a single source of pollution. For example, a rich body of work
has quantified the impact of crop burning and biomass burning on the air quality of Delhi (e.g.,
References [4, 9, 15, 32]). Other work considers multiple sources but models air pollution within

the city [24, 25]. Instead, we consider multiple sources such as biomass burning, thermal power
plants, steel plants, and human activity from all over India. This is similar to source apportionment,
which we discuss next.

6.2 Source Apportionment Studies

As explained in Guttikunda’s excellent primer [21] on source apportionment (SA), such studies
(reviewed in References [45, 50]) focus on isolating the sources of pollution in a city. SA studies
can be classified as “top-down” or “bottom-up” [21]. The top-down approach involves collecting
air samples and analyzing them in a laboratory to assess the contributions of different sources.
The bottom-up approach, which our study also follows, utilizes existing data to estimate pollution
sources.

However, most bottom-up SA studies in Delhi consider sources within or around the city [23, 46].
For example, Guttikunda et al. [23] estimate the impact of various sources such as vehicular
emissions, domestic activities, and power plants, but they only consider intra-urban sources,
whereas we model a multitude of pollution sources across the country. Other apportionment stud-
ies [20, 43, 44, 50] focus on the chemical characterization of PM2.5. Such studies reveal generic
pollution sources such as biomass burning or industries but do not identify which farmlands or
factories specifically are responsible, thereby impeding targeted policy design.

Ghosh et al. [19] present the closest work to ours in identifying subcontinental and regional
sources affecting air quality in Delhi. The main differences between our works lie in the methods.
First, they use HYSPLIT in the trajectory mode rather than the dispersion mode, which causes
information to be lost about the travel of particles from the source to the sink. Second, they
present an “analysis” that is useful to identify past sources but cannot be generalized to test the
efficacy of future policy interventions. In comparison, PollutionMapper allows a what-if analysis
of policy interventions by tweaking relevant features and measuring their impact on PM2.5 at
the sink.

7 CONCLUSION AND LIMITATIONS

Air pollution is a major public health hazard responsible for 4–10 million deaths globally each
year. Given ineffective past interventions, there is a need for data-driven ways of designing policy
interventions. In this article, we presented PollutionMapper, a source-identification model that
captures the geographical, chemical, and meteorological factors affecting PM2.5 concentration at
the sink location. We focused our analysis on PM2.5 in Delhi but with little effort, this model
is generalizable to other cities in India and around the world. The model tracked the release of
pollutants from their source to the sink using the HYSPLIT wind dispersion model and predicted
the concentration of the seven PM2.5 constituents at the sink with low MAPE. Instead of a standard
fixed-effects model, we used a mixed-effects model that was able to capture the seasonality of the
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various constituents of PM2.5. A feature importance analysis uncovered the impact of far-away
polluting sources on the PM2.5 concentration in Delhi.

Policymakers can use such a model to test the efficacy of policy interventions before spending
time, effort, and public money in deploying the interventions. For example, before implementing
the Odd-Even traffic rule in Delhi, policymakers can test the expected effect of this intervention on
the air quality of the city. They can use PollutionMapper and artificially lower the concentration
of NO2 in the feature set of PMNi model and then run the model to predict the PMNi in Delhi. If
there is no significant change, then that would mean that the intervention is ineffective.

Limitations and Future Work: First, this work focuses on modeling the global causes of air
pollution that affect the entire city. However, it is well-known that PM2.5 concentration is a local
phenomenon that changes every few meters. Modeling hyper-local factors is not the focus of this
work. In future work, we aim to build a similar model to identify to hyper-local pollution sources
that affect the air quality within a small locality, such as garbage dumps and small fires. Second,
this article presents a comprehensive analysis of our model and its predictions. Despite our best
attempts, it is possible that the model may be picking up spurious correlations, and we are working
towards conducting a causal analysis of PollutionMapper.
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